Beamline 15-ID / ChemMatCARS-CAT

Scientific focus: Dynamic and structural condensed matter chemistry

Scientific programs: Time-dependent chemical crystallography scattering, anomalous scattering, micro crystallography; static and time-dependent surface scattering, dynamic protein diffraction, and small beam probing of complex structural polymers; interfacial and bulk studies using small- and wide-angle x-ray scattering; and coherent x-ray scattering of polymer/metal nanocomposites, nano-colloidal, and opaque materials.

Optics & Optical Performance

- Kohzu Seiki monochromator HLD-3
 - 3.1–22.5 keV energy range (for Si(111) and 25-mm offset)

5°-40° angular range

25-35 mm offset

cryo-cooled Si or water-cooled diamond modes

• Oxford/SESO vertically focusing mirror (A)

water cooling

white beam compatible

- Oxford/SESO water-cooled 2nd steering mirror (B)
- modes of operation:
 - 1) monochromator w/ or w/out mirror(s)
 - 2) white beam mirror operation
- high-energy-resolution monochromator

 $\Delta E/E \sim 10^{-5}$

used with Kohzu monochromator

• in-station optics

steering crystal or multilayer for surface science microfocusing optics

Experiment Stations

15-ID-A

white beam first optics enclosure

15-ID-B

- white beam station
- crystallography

15-ID-C

- pink beam station
- surface science

15-ID-D

- SAXS/WAXS
- 10 m L x 5.8 m H

Detectors

- Amptek energy dispersive detector
- Canberra Ge detector
- Fuji imaging plates
- Bruker model 6000 CCD
- Princeton Scientific model LN/CCD-1024SF CCD
- NaI detectors
- Oxford ionization chambers
- avalanche photodiodes
- Bruker 4-quadrant CCD

Beamline Controls and Data Acquisition

- EPICS and SPEC in addition to IDL, Windows NT and Sun Workstations running channel access with tools such as MEDM
- electronics VM- and NIM-based

Beamline Support Equipment/Facilities

- Bruker kappa single-crystal diffractometer
- Huber 6-circle (15-ID-B & -C)
- liquid surface spectrometer (15-ID-C)
- monochromatic beam chopper for time-resolved studies

open time $\sim 2.4~\mu sec$ frequency $\sim 1.3~kHz$ attenuation $\sim 2x10^{-7}$ at 33 keV

• Nd:YAG laser ($\lambda = 355 \text{ nm}, 400 \mu\text{J} \text{ at } 1000 \text{ Hz}$)

Insertion Device Source Characteristics (nominal)

source	Undulator A
period	3.30 cm
length	2.47 m
effective K _{max} (at minimum gap = 10.5 mm)	2.78
energy range 1st harmonic	2.9 - 13.0 keV
energy range 1st - 5th harmonics	2.9 - 45.0 keV
on-axis peak brilliance at 6.5 keV	9.6 x 10 ¹⁸ ph/sec/mrad4mm40.1% bw
source size at 8.0 keV \sum_{y}^{x} \sum_{y}^{x}	$359~\mu\mathrm{m}$ $21~\mu\mathrm{m}$
source divergence at 8.0 keV $\sum_{x'} \sum_{y'}$	$24~\mu\mathrm{rad}$ $6.9~\mu\mathrm{rad}$